
Parametric Polymorphism in Haskell

Ben Deane

30th October 2014

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 1 / 15



Disclaimer

I suspect there are several people in the audience who know
more about this than I do!

This is what I think I know. (Broadly on the topic of Parametric
Polymorphism.)

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 2 / 15



Two kinds of polymorphism

Parametric
Type variables
(a, b, etc)

Universal

Compile-time

C++ templates,
Java generics

Ad-hoc
Type classes
(Eq, Num, etc)

Existential?

Runtime (also)

Classical
("normal" OO)

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 3 / 15



Two kinds of polymorphism

Parametric
Type variables
(a, b, etc)

Universal

Compile-time

C++ templates,
Java generics

Ad-hoc
Type classes
(Eq, Num, etc)

Existential?

Runtime (also)

Classical
("normal" OO)

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 3 / 15



Two kinds of polymorphism

Parametric
Type variables
(a, b, etc)

Universal

Compile-time

C++ templates,
Java generics

Ad-hoc
Type classes
(Eq, Num, etc)

Existential?

Runtime (also)

Classical
("normal" OO)

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 3 / 15



Two kinds of polymorphism

Parametric
Type variables
(a, b, etc)

Universal

Compile-time

C++ templates,
Java generics

Ad-hoc
Type classes
(Eq, Num, etc)

Existential?

Runtime (also)

Classical
("normal" OO)

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 3 / 15



Polymorphic Datatypes

For example. . .
1 data Maybe a = Nothing | Just a

2

3 data List a = Nil | Cons a (List a)

4

5 data Either a b = Left a | Right b

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 4 / 15



Polymorphic Functions

For example. . .
1 reverse :: [a] -> [a]

2

3 fst :: (a,b) -> a

4

5 id :: a -> a

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 5 / 15



Universally quantified

Work over all types
Assume nothing behaviour-wise
Parametricity

Intuitively, all instances act the same way
Theorems for free
eg. reverse . map f ⇔ map f . reverse

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 6 / 15



Totality

Partial functions
1 head :: [a] -> a

2

3 tail :: [a] -> [a]

What happens when a is []?

These are not total functions.
They are undefined for some inputs.

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 7 / 15



Type Inference and Unification

Unification: the process of solving a system of equations in type
variables.

and

Inference: Why you thought you meant Int -> Int but the
compiler knows you really meant Num a => a -> a.

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 8 / 15



An Odd Thought

What can we say about a -> a?

We know it has to be id.
What can we say about Int -> Int?

Almost nothing!

Even though we know more about Int than about a!

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 9 / 15



An Odd Thought

What can we say about a -> a?
We know it has to be id.

What can we say about Int -> Int?

Almost nothing!

Even though we know more about Int than about a!

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 9 / 15



An Odd Thought

What can we say about a -> a?
We know it has to be id.

What can we say about Int -> Int?

Almost nothing!

Even though we know more about Int than about a!

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 9 / 15



An Odd Thought

What can we say about a -> a?
We know it has to be id.

What can we say about Int -> Int?
Almost nothing!

Even though we know more about Int than about a!

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 9 / 15



An Odd Thought

What can we say about a -> a?
We know it has to be id.

What can we say about Int -> Int?
Almost nothing!

Even though we know more about Int than about a!

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 9 / 15



Types as Sets

The set of representable values
How many values inhabit the type
Characterised by cardinality of the set

For example
0 ? (in some languages, void)
1 a -> a

2 Bool

264 Int

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 10 / 15



Sum Types and Product Types

Sum types represent alternation

For example
a + b ⇔ Either a b

1 + a ⇔ Maybe a

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 11 / 15



Sum Types and Product Types

Product types represent composition

For example
a * b ⇔ (a,b)

a * 2 ⇔ (a,Bool)

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 12 / 15



What about function types?

They equate to a power function
ba ⇔ a -> b

(For concrete types, not type variables)

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 13 / 15



From CIS194 2014

Week 4, Exercise 5
1 -- How many distinct functions inhabit this type?

2 ex5 :: Bool -> Bool

3 -- Answer: 4

4 ex5 = const True

5 ex5_2 = const False

6 ex5_3 = id

7 ex5_4 = complement

8 -- Using type algebra:

9 -- Bool -> Bool

10 -- => 2 -> 2

11 -- => 2^2 = 4

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 14 / 15



Further Reading/Watching

Theorems for Free - Philip Wadler
The Algebra of Algebraic Data Types - Chris Taylor

London HUG video

Adventures with Types in Haskell - Simon Peyton-Jones

Ben Deane Parametric Polymorphism in Haskell 30th October 2014 15 / 15

http://ttic.uchicago.edu/~dreyer/course/papers/wadler.pdf
http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/
https://www.youtube.com/watch?v=YScIPA8RbVE
https://www.youtube.com/watch?v=6COvD8oynmI

