
Type Class
AKA trait, protocol, interface, ...

Brian “601” Russell - 2014 Nov 06, Thu

Environmental Cartoons by Joel Pett

http://www.climateactionreserve.org/wp-content/uploads/2012/08/climatesummit.jpg  

TYPE CLASSES - 601 �1

http://www.climateactionreserve.org/wp-content/uploads/2012/08/climatesummit.jpg

Type classes began as a way for Philip Wadler to embarrass the ML community (eqtype),
but turned out to be a great idea anyway.

Trigger Warning: Haskell has an implicit type fetish:
• class is really type class
• data is really data type
• instance is really kind of a type class instance type

As they all just make more kinds of types.

TYPE CLASSES - 601 �2

Eq

* bold italic is library code 

Egalitarianism

Haskell class Eq a where
 (==) :: a -> a -> Bool -- should be only ONE colon!
 (/=) :: a -> a -> Bool

data K = K

instance Eq K where -- means: K is Eq compliant, and here is how
 (==) _ _ = False
 (/=) _ _ = False -- worse then breaking the 2nd Monad law

let o = K

(o == o, o /= o) -- (False, False)

Scala class K {
 override def equals (that: Any): Boolean = false } // DTTAH

val o = new K()

println((o == o, o != o, o eq o)) // (false,true,true)

Swiƒt class K : Equatable { }

func == (lhs: K, rhs: K) -> Bool { return false }
func != (lhs: K, rhs: K) -> Bool { return false }

let o = K()

println((o == o, o != o, o === o)) // (false, false, true)

TYPE CLASSES - 601 �3

Ordering

These K won't sort very easily (although it wouldn't matter), but any Ord a => type that
implements compare properly (e.g. transitivity), will bring order to chaos.  

Less is More

Haskell data Ordering = LT | EQ | GT

class Eq a => Ord a where
 compare :: a -> a -> Ordering

instance Ord K where compare _ _ = LT

let k = o

(o < k, k < o) -- (True,True)

Scala object K extends Ordering[K] {
 override def compare (x: K, y: K): Int = -601 } // 1.6 bits used

val k = o

println((o < k, k < o)) // (true,true)

Swiƒt extension K : Comparable { }

func < (lhs: K, rhs: K) -> Bool { return true }

let k = o

println((o < k, k < o)) // (true,true)

TYPE CLASSES - 601 �4

Motivation
I want to use the same function to fix things:

fix :: Int -> String
fix i = show (i + 600)

fix :: Float -> String -- ghc: Duplicate type signatures for ‘fix’
fix f = show (100 * f) -- ghc: Multiple declarations of ‘fix’

But with a type class:

class Fixer a where fix :: a -> String

instance Fixer Int where fix i = show (i + 600)
instance Fixer Float where fix f = show (100 * f)
instance Fixer Char where fix c = c : ['O', '1']
instance Fixer String where fix s = s

let i = 1 :: Int
let f = 6.01 :: Float

(fix i, fix f, fix '6', fix "601")

-- ("601","601.0","6O1","601")

TYPE CLASSES - 601 �5

Monad
To easily comprehend the mysteries of the Monad, just read the original paper on the topic:
La Monadologie, Leibniz (1714).

"Further, there is no way of explaining how a Monad can be altered in quality or internally
changed by any other created thing; since it is impossible to change the place of anything in it
or to conceive in it any internal motion which could be produced, directed, increased or
diminished therein, although all this is possible in the case of compounds, in which there are
changes among the parts. The Monads have no windows, through which anything could come
in or go out. Accidents cannot separate themselves from substances nor go about outside of
them, as the ‘sensible species’ of the Scholastics used to do. Thus neither substance nor accident
can come into a Monad from outside."

And tragically, Monad papers haven't gotten any better in 300 years.

The Monadology

Haskell class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b -- bind (aka flatMap)

instance Monad [] where
 m >>= ƒ = foldr ((++) . ƒ) [] m

instance Monad Maybe where
 (Just x) >>= ƒ = ƒ x
 Nothing >>= _ = Nothing

do x <- [-1..1]; y <- [4..6]; [(x * y)]

-- [-4,-5,-6,0,0,0,4,5,6]

Scala trait FilterMonadic[+A] extends Any {
 def flatMap[B, That](f: A => GenTraversableOnce[B]): That }

println(for (x <- -1 to 1; y <- 4 to 6) yield x * y)

// Vector(-4, -5, -6, 0, 0, 0, 4, 5, 6)

Swiƒt // DIY :-(

TYPE CLASSES - 601 �6

Shapes

Easy to see Monad Laws

The Kleisli composition operator

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c

f >=> g = \x -> f x >>= g -- built with bind inside

(m >=> n) x = do { y <- m x; n y }

unit

fmap

join

bind [�]

[�]

 � -> [�]
[[�]]

[�]

[�]

[�]
[�]

 � -> �
�

monad composition ≣

Left identity return >=> f f

Right identity f >=> return f

Associativity (f >=> g) >=> h f >=> (g >=> h)

TYPE CLASSES - 601 �7

